

## What is NOy

Total Reactive Nitrogen

"Collective name for oxidized forms of <u>nitrogen</u> in the <u>atmosphere</u> such as <u>nitric oxide</u> (NO), <u>nitrogen dioxide</u> (NO<sub>2</sub>), <u>nitric acid</u> (HNO<sub>3</sub>), and <u>organic nitrates</u>; usually designated by NO $_{\nu}$ " - *AMS* 

- Precursors in the formation of Ozone
- Definitions

$$NOy = NOz + NOx$$

$$NOx = NO + NO2$$

$$NOz = HNO_3 + HONO + 2N_2O_5 + HO_2NO_2 + PAN + NO_3 + Organic Nitrates – but not NH3$$

- Some NOz compounds have short lifetimes
- NO<sub>2</sub> specific analyzer required to measure NOz

### Technique

- Measurement using Nitric Oxide-Ozone Chemilumescence analyzer
- Conversion of NOy species to NO
  - Molybdenum ~325°C
  - Gold with CO or H2 injection ~ 400°C
  - Vitreous Carbon ~ 350°C
  - Ferrous Sulfate
- Converter as near inlet as possible with no sample filter
- Requires trace level analyzer for useful measurement
- Minimizing residence time essential to good measurement

## Simple Pneumatic Block Diagram



Air Monitoring Instrumentation - Nitrogen Oxides (NOy)

# Analyzer Differences

|                         |               | Premium       |                                |
|-------------------------|---------------|---------------|--------------------------------|
| Specification           | Standard      | NOx           |                                |
| or Characteristic       | NOx Analyzer  | Analyzer      | Purpose                        |
| LDL                     | <400 ppt      | <50 ppt       |                                |
| zero drift 24 hours     | <500 ppt      | <100 ppt      |                                |
| zero drift 7 days       | <1000 ppt     | <200 ppt      |                                |
| Propylene reject. Ratio |               | >20,000:1     |                                |
| Ethylene reject. Ratio  |               | >40,000:1     |                                |
|                         |               |               |                                |
|                         |               |               |                                |
| PMT Anode Sensitivity   | 2500 A/Im     | 3000 A/Im     | More sensitivity, higher SNR   |
| Reaction Cell           | Non-plated    | Gold Plated   | Increased signal out           |
| Flow Rate               | 500 ccm       | 1000 ccm      | Increased signal out           |
| Nominal Cell Pressure   | 5" HgA        | 2.5" HgA      | Increased sensitivity          |
|                         | Autozero stop | Autozero with |                                |
| Autoref scheme          | sample flow   | prereactor    | Improved hydrocarbon rejection |

#### **Inlet Materials**

(or how can we keep "It" from sticking)

- "It" = gasses that readily stick to surfaces especially <u>nitric</u> acid and <u>ammonia</u>
- Causes memory effect leading to excessive rise and fall times:
  - Operation over or under actual value, smear features
  - Calibration Elevated zeros, reduced spans
- Exacerbated by long tubing, low temperatures

#### **Inlet Materials**

Standard: 1/4" stainless tubing, adapters and fittings

#### Field Testing:

- SilcoSteel® (hydrogenated amorphous silicon) coated, stainless for inlet and other NOy wetted surfaces, including body and inlet tubing of converter
- PFA bulkhead, cross and tubing to within ½" of converter inlet;
  converter inlet and body SilcoSteel® coated

#### Calibration

- Gases: Nitric, iPan, nPan, NO<sub>2</sub>, NO/GPT
  - No SRM
  - Nitric: very difficult to use
  - N-propyl nitrate: difficult to obtain & questionable analog for nitric
  - Iso-propyl nitrate: readily available
- Errors in verifying conversion efficiency using bottles
- Big cal gas flows required
- Can not run from common manifold
- Losses due to conditioning
- Must be VERY, VERY patient

# Conditioning with 500 ppb NO<sub>2</sub>



Air Monitoring Instrumentation - Nitrogen Oxides (NOy)

## Checking Converter Efficiency

- Gas Phase Titration (GPT) golden standard
  - Auto-referencing independent of NO or Ozone concentration
  - Independent of MFC calibrations and matching
- NO/NO<sub>2</sub>, nPan or i-Pan bottles
  - Limited by accuracy of bottles
  - Limited by accuracy and linearity of MFCs
  - Best to maintain MFC flows use ratio of bottles
  - Check for contaminants in NO and other bottle

## GPT vs. NO/NO2 gas Efficiency

| Method      | Efficiency |  |  |
|-------------|------------|--|--|
| GPT         | 99%        |  |  |
| Gas Bottles | 101%       |  |  |

#### Efficiency by GPT (100 ppbv)



#### Efficiency with NO & NO2 Bottles



Air Monitoring Instrumentation - Nitrogen Oxides (NOy)

## iPan/nPan Efficiency



Air Monitoring Instrumentation - Nitrogen Oxides (NOy)

#### Interferences

- Water: no effect at zero, ~ 3% quench at span
- $NH_3$ : 1 5 %
- Ammines ??
- Hydrocarbons

#### \* WATER INTERFERENCE DATA - TABLE 14

| DATA | TEST 1       | TEST 2       | TEST 3       | TEST 4       | TEST 5       | TEST 6       | TEST 7      |
|------|--------------|--------------|--------------|--------------|--------------|--------------|-------------|
| R4   | 104.9<br>ppb | 104.3<br>ppb | 104.1<br>ppb | 106.2<br>ppb | 106.4<br>ppb | 106.1<br>ppb | 99.4<br>ppb |
| R14  | 99.1         | 98.7         | 99.0         | 100.7        | 101.2        | 100.6        | 95.1        |
| R14' | 101.3        | 100.9        | 101.2        | 102.9        | 103.4        | 102.8        | 97.2        |
| IE   | -3.6         | -3.4         | -2.9         | -3.3         | -2.7         | -3.3         | -2.2        |

### Siting

- Be aware of nearby sources of:
  - Hydrocarbons roofing materials
  - Ammonia sewer vents



NSF UV Spectroradiometer – Barrow, AK Courtesy of Biospherical Instruments



Pinnacle State Park, NY

Air Monitoring Instrumentation - Nitrogen Oxides (NOy)

#### Pinnacle State Park NOy Comparison

Courtesy of Atmospheric Sciences Research Center University at Albany - State University of NY



Air Monitoring Instrumentation - Nitrogen Oxides (NOy)

## Acknowledgements & Bibliography

- Jim Schwab
  - Atmospheric Sciences Research Center University at Albany - State University of NY
- Dirk Felton
  Division of Air Resources, NYS Department of Environmental Conservation,
- Measurement of NO<sub>y</sub> During SCOS97-NARSTO
  Dennis R. Fitz, University of California, Riverside, College of Engineering, Center for Environmental Research and Technology
- Review of M200AU: NOY Converter Design Theory and Practice Martin Buhr, Regional Air Quality Council, Denver, CO, 1997
- AMS Glossary of Meteorology
  American Meteorological Society
  <a href="http://amsglossary.allenpress.com/glossary/acknowledge">http://amsglossary.allenpress.com/glossary/acknowledge</a>